

Mug Handles You'll Want To Hold On To

Hippersons.com 2024

2 Form, shape and set handles

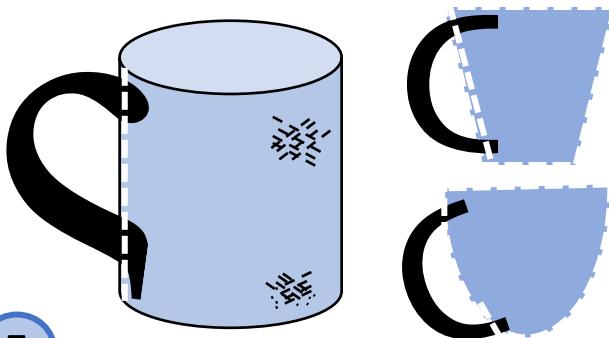
- Form handles longer than the needed length to allow for adjustments
- Tip:** make more than you'll need, so you have options
- Gently form the handles into a shape close to their final form (consider D, ?, C shapes, rings, etc.)
- Place over a form or stick ends to table/board and allow to set up /dry

3 Size it up

- Once the handles are set up, can be handled (and are closer to the cup's moisture level), size the handle up to the cup to determine length and placement
- Tip:** Lay the handle on its side and hold the cup over it
- Cut the handle to correct length, at the correct angle for cup shape; maximizing joint surface area
- Check fit on cup before proceeding;** adjust cuts if necessary

4 Score, slip & join

- Score the cut ends of the handle and the cup with a serrated rib, pin tool, or scoring tool
- Tip:** Wet or apply slip to the handle ends, press against cup to determine where to score
- Score cup; wet clay or apply slip (recommended for M370)
- Join by pressing and wiggling; avoid over-handling, thinning the handle, or adding too much water



#Muglife Best Practices

- PLACEMENT:** consider the handle's relation to the mug's centre of gravity; too high, too low, or too far away can be awkward
- PROFILE SHAPE:** compliment the shape of the cup; an angle or curve near the top is easy to balance – D or ? shapes work well
- CROSS-SECTION SHAPE:** generous enough to be easily held, curved for comfortable fit against fingers
- SIZE:** allow enough space for 2 or more fingers, and for fingers to not touch the hot mug wall
- FIT:** consider proportions; removing slip will prevent appearance of cracks at seams
- DRYING:** cover after joining to allow moisture levels to even out more before drying fully; more grogged clays (e.g., M340) may only need an hour to a day; more porcelain clays (e.g., M370, P300) need longer, slower drying
- COMFORT CHECKLIST:** rounded edges; pleasing or smooth textures; shape puts even, comfortable pressure on fingers
- LOOK CHECKLIST:** well-proportioned to cup, enhances overall style and compliments cup, cleanly and neatly joined

1 Choose handle making method

- Pulled:** shape by hand; wets clay, allow more time to set up
- Extruded:** select desired shape on extruder, extrude, compress handles with rib as needed
- Slab:** roll long $\frac{1}{4}$ "/0.5cm slab, cut strip, smooth edges
- Coil:** roll a coil, flatten slightly
- Cut:** use a trimming tool or other shaped cutter to cut a handle shape from a large block of clay, compress and smooth

5 Tidy & dry

- Wipe slip away with sponge or paintbrush, smooth seams or edges
- Adjust the shape of the handle
- Tip:** Dry on rims to help maintain shape and joins; dry slowly

Get the Balance Right

- IDEALLY,** join a handle to a cup when moisture levels are equal, so they will shrink together at the same rate to reduce the likelihood of cracking from tension from uneven drying
- TIP:** On handle day, form handles and let them set up while trimming cups, moisten cups if necessary and keep covered
- Remember,** some clay bodies are more prone to cracking and need longer, slower drying, and are less forgiving overall

Pulled Handles: A Classic!

- Wedge & form a piece of clay into a slightly elongated shape
- Holding the clay securely in one dry hand, wet your other hand, form fingers into a hook or ring shape, and "pull" your hand down the clay smoothly with even light pressure; let it come to a point and bring your hand off the end with each pass
- Continue "pulling" or elongating the handle over a bucket, rotating it as you go for an even shape, wetting hand as needed, gradually stretching out the clay in length until the desired handle thickness is reached
- Pinch off the top of the handle length just above where you would attach it
- Form into desired handle shape (C, D, ?, etc) and allow to set up before attaching; use a rolling pin or other form as a support if needed, or simply stick the ends to a surface

Mug Handles: In Depth

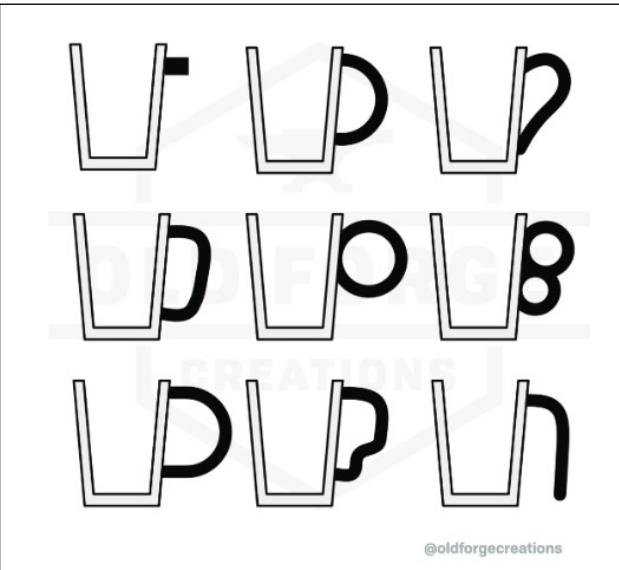
A Handle Making Methods

- **Pulled Handles:** classic method, takes some skill, naturally fits fingers comfortably
- **Extruded Handle:** standard, consistent shape, easy to make, not all shapes fit fingers
- **Hand-built:** includes slab-built, coils, and handles cut from a block of clay; many options for style, shape, and texture

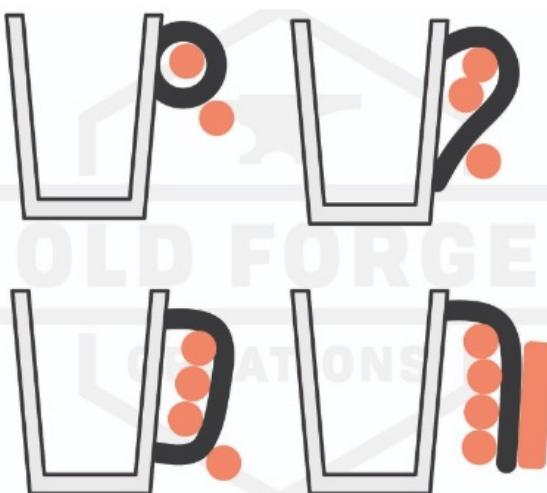
B Handle Profiles

- **C Shape:** curved, both ends turn inward where attached
- **D Shape:** curved with straight ends where attached
- **? Shape:** curved downward at top, bottom flat where attached
- **Other open shapes:** incl. single or double rings (0 or 8), P-shaped; any other shape you can put 1+ fingers into
- **Lug-type:** a knob; any shape of solid handle you grasp

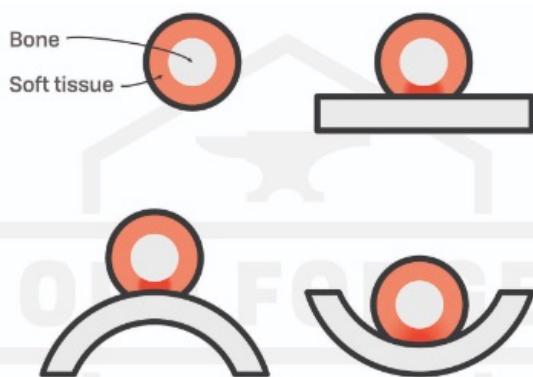
C Finger Fit


- Consider how many fingers can fit in the handle; bigger mugs may need more fingers for proper support,
- Hand size and personal preference vary
- Fingers are round, consider the shape of the part of the handle fingers will grasp

There are many ways to make handles, and even more designs and shapes a potter can give a handle, but if you've ever wondered why some really do feel better to hold than others, here is the science behind mug handles.


Distilled from Old Forge Creations' deep dive on mug handles:

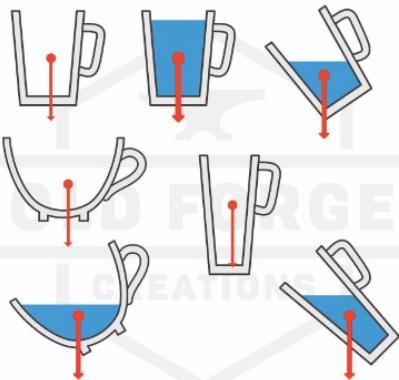
<https://www.oldforgecreations.co.uk/blog/mug-handles>


Examples of handle profiles

@oldforgecreations

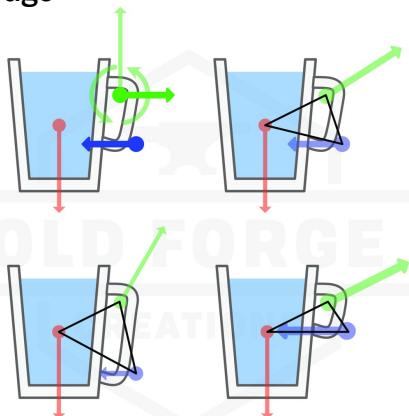
@oldforgecreations

Very basic look at how a finger would compress. There are similar surface areas in contact on all three, but the pressure can be focused on a small amount of soft tissue or diffused over a larger area, depending on the handle geometry relative to the finger shape


@oldforgecreations

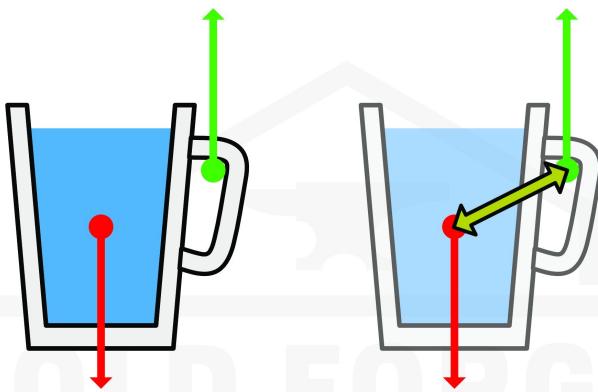
D Physics of the Drinking from a Mug

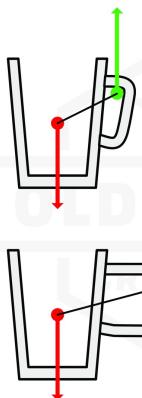
The following concepts impact the way a mug feels in the hand as it is lifted, tilted to drink from, and kept steady – in fact “most of the force required to hold the mug stable is to stop it from tipping rather than to support the weight.” Any mug will be balanceable, but some shapes will impact these forces and simply make the hand work harder to achieve balance and control.


- Centre of gravity: the area the average of the mass is located; generally this is the volumetric centre of a well-made mug
- Leverage: the distribution of balance between the points of contact of the fingers and their distance from the centre of gravity
- Torque: the twisting force when rotating the mug to drink from; an extended mug handle increases torque which makes the hand work harder to keep the mug steady when drinking

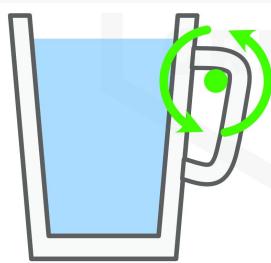
Centre of Gravity

@oldforgecreations

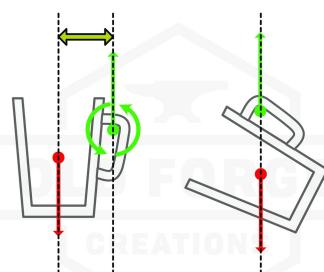

Leverage


@oldforgecreations

“There is potentially 4x more pressure on the fingers in the bottom right example than the bottom left, despite the mug being the same size and weight. In order to balance this greater force, the top finger has to increase the force it applies by the same amount.”
 -OldForgeCreations.co.uk


Torque

An extreme example, but extending the handle away from the body increases the leverage and torque. The lower mug will need twice the force from the fingers to stop it from rotating.



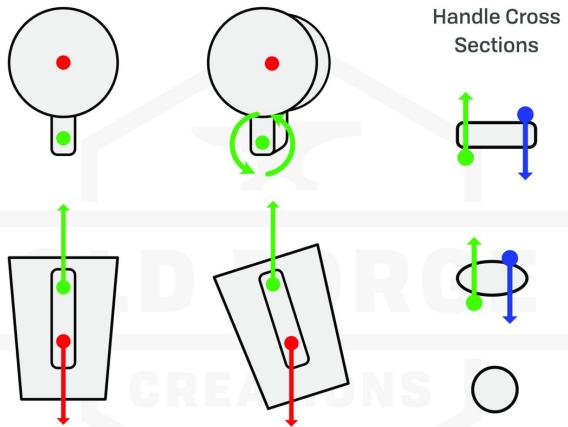
@oldforgecreations

The torque (rotational force) around the top of the handle is determined by the weight of the mug and the distance between the handle and the centre of gravity

@oldforgecreations

There's no torque around the handle when the point of contact is in line with the centre of gravity. The mass and leverage haven't changed, but there's no resultant force.

@oldforgecreations

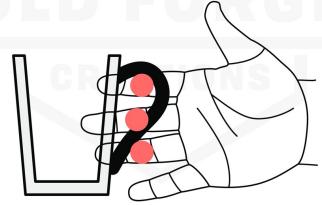
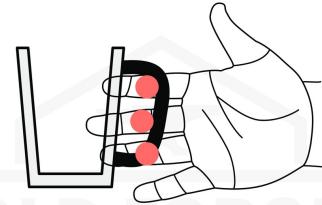

Mug Handles In Depth cont'd

E Physics of Holding the Handle

The following concepts factor into the way a mug is grasped and used for drinking

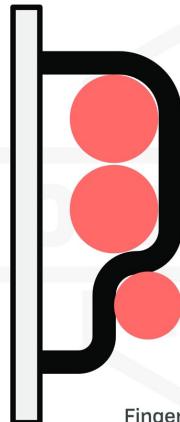
- Friction: the resistance that one surface or object encounters when moving over another; texture increases friction and can impact comfort
- Tilting: when a mug is tilted by its handle out of vertical alignment, the other forces become increased
- Profile shape: the shape of the handle (O, D, C etc.) impacts the ability to grip the handle, and manage the other forces to balance
- Cross-section shape: a flattened handle will be grasped more easily than a handle that is completely round
- Pressure: how the finger's shape meets the shape of the handle will affect the comfort of the grip

Holding and Tilting a Mug

As the mug tilts, it wants to spin around the handle. The handle cross section determines how much leverage your fingers have to resist the rotation. Handles with a perfectly round cross section offer no leverage at all.

@oldforgecreations


F "The Best" Handle ?

- A D- or ?- shaped handle will generally be the easiest for the hand to balance
- Two to three-fingered sizes are generally most preferred
- A flattened, elliptical cross-section with curved edges will maximize friction, minimize finger pressure, and be comfortable to hold
- Pulled handles are uniquely hand-shaped 😊
- Include enough space from the handle to the cup's surface to avoid contact with hot walls when full
- The proportions should suit the size of the mug
- The shape of your cup may lend itself better to certain handle profiles
- If the handle is higher than the rim, will be harder to dry and can't be stored upside down
- Weight of the vessel is important, as mugs are lifted repeatedly; use caution when adding sprigs or other features that add weight. "Most mugs will hold somewhere near the same weight of liquid as they themselves weigh. So a 500g mug will probably have a capacity of around 500ml, giving a total mass of 1000g when full."
- Any texture should be pleasing to the hand
- You can achieve a great mug handle with any method of making (pulled, slab, etc.)

@oldforgecreations

Enough of a gap that the fingers don't touch the hot surface, without being excessively far out

Bend at the top gives a comfortable place for the first finger to support the weight and apply lateral forces

Step gives a comfortable place for the third finger to apply force inwards and upwards, in (roughly) its natural resting position

Fingers are naturally locked into place by the shape and minimal grip strength is needed

@oldforgecreations